baredSC in Galaxy

Lucille Delisle

EDG 2023
2023-10-05
baredSC: Bayesian approach to retrieve updates expression distribution of single-cell data

Lucille Lopez-Delisle ${ }^{1 *}$ © and Jean-Baptiste Delisle ${ }^{2}$ ©

scRNA-seq

From perkinelmer website

scRNA-seq

- scRNA-seq:

From perkinelmer website

- Get a count for:
- each cell
- each gene
- The matrix is very sparse:
- About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.
- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $\log \left(1+10^{4} \frac{x}{N}\right)$

scRNA-seq

- The matrix is very sparse:

- About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.

A mRNA with a concentation of 10^{-4}
Sequence 10k mRNA ($\lambda=1$)
Sequence 40k mRNA ($\lambda=4$)

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $\log \left(1+10^{4} \frac{x}{N}\right)$

scRNA-seq

- The matrix is very sparse:

- About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.

A mRNA with a concentation of 10^{-4}
Sequence 10k mRNA ($\lambda=1$)
Sequence 40k mRNA $(\lambda=4)$

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $\log \left(1+10^{4} \frac{x}{N}\right)$

scRNA-seq

- scRNA-seq:
- Get a count for:
- each cell
- each gene

- The matrix is very sparse:
- About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.

A mRNA with a concentation of 10^{-4}
Sequence 10k mRNA ($\lambda=1$)
Sequence 40k mRNA $(\lambda=4)$

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $\log \left(1+10^{4} \frac{x}{N}\right)$

Hoxd13
Hoxa11

If we know how to model the noise, can we denoise scRNA-seq?

baredSC for a single gene (baredSC_1d)

- Goal: Find an estimation of the Probability Density Function (PDF) of the REAL expression for a given gene.
- Hypotheses:
- Most of 'noise' in scRNA-seq comes from sampling and can be explained by a Poisson law.
- The PDF can be approximated by a Gaussian mixture model.
- Parameters
- Number of Gaussians
- Characteristics of Gaussians
- Strategy
- Bayesian approach = evaluate the probability of the parameters given the data
- We use Markov chain Monte Carlo for a fixed number of Gaussians and then combine different results using evidence.

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

$N(0.5,0.15)$ $N(1.5,0.15)$ $N(2.5,0.15)$
$N(0.5,0.2)$ $N(1.25,0.2)$ $N(2,0.2)$

baredSC_1d with real data

- Improve regular violin plots

baredSC_1d with real data

- Improve regular violin plots

Hoxd13

Hoxa11

baredSC_1d with real data

- Improve regular violin plots

Application of baredSC in study where both FACS and scRNAseq datasets are available

ARTICLE

Cell-specific alterations in Pitx1 regulatory landscape activation caused by the loss of a single enhancer

Raquel Rouco(${ }^{1,2,5}$, Olimpia Bompadre © ${ }^{1,2,5}$, Antonella Rauseo ${ }^{1,2}$, Olivier Fazio ${ }^{3}$, Rodrigue Peraldi ${ }^{1,2,4}$, Fabrizio Thorel ${ }^{3}$ \& Guillaume Andrey © ${ }^{1,2 凶}$

Application of baredSC in study where both FACS and scRNAseq datasets are available

[^0]
Application of baredSC in study where both FACS and scRNAseq datasets are available

D Normalized expression after baredSC

Application of baredSC in study where both FACS and scRNAseq datasets are available

Rouco et al. 2021 Fig 4

Genotype \square F FL FL Pitx $1^{\text {+/4 }}$

D Normalized expression after baredSC

HL Pitx $1^{* /+}$ HL Pitx Pen-Pen-

baredSC_2d

- The same strategy used for a single gene can be extended to 2 dimensions for 2 genes using 2D gaussians.
- From the MCMC posteriors we can deduce a correlation coefficient.

baredSC: Conclusions

- baredSC help to study the distribution of expression levels in a few genes of interest.
- It could replace the widely used violin plots from normalized data.
- It allows to retrieve the multi-modal expression distribution.
- baredSC in 2D allows better evaluation of the correlation between genes.
- Big disadvantage of baredSC is the computation time.

baredSC is already in Galaxy

Acknowledgements

- Jean-Baptiste Delisle
- Duboule's lab

$\square \square \square \square$

- Andrey's lab
Swiss National
- tools-iuc

[^0]: Rouco et al. 2021 Fig 4

