baredSC in Galaxy

Lucille Delisle

EDG 2023

2023-10-05

Lopez-Delisle and Delisle BMC Bioinformatics (2022) 23:36 https://doi.org/10.1186/s12859-021-04507-8 **BMC** Bioinformatics

RESEARCH ARTICLE

Check for

Open Access

baredSC: Bayesian approach to retrieve expression distribution of single-cell data

Lucille Lopez-Delisle^{1*} and Jean-Baptiste Delisle²

From perkinelmer website

- scRNA-seq:
 - Get a count for:
 - each cell
 - each gene
 - The matrix is very sparse:
 - About 360k mRNA per cell (source: giagen), usually sequence 5-40k mRNA
 - A 0 does not mean no expression.
 - The noise and sparsity can be explained by the Poisson distribution.
 - People usually display logNorm expression: $log(1 + 10^4 \frac{x}{N})$

- scRNA-seq:
 - Get a count for:
 - each cell
 - each gene
 - The matrix is very sparse:
 - About 360k mRNA per cell (source: giagen), usually sequence 5-40k mRNA

Bulk RNA Sec

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $log(1 + 10^4 \frac{x}{N})$

From wikimedia

A mRNA with a concentation of 10⁻⁴ Sequence 10k mRNA ($\lambda = 1$) Sequence 40k mRNA ($\lambda = 4$)

- scRNA-seq:
 - Get a count for:
 - each cell
 - each gene
 - The matrix is very sparse:
 - About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.

Bulk RNA Sec

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $log(1 + 10^4 \frac{x}{N})$

From wikimedia

A mRNA with a concentation of 10^{-4} Sequence 10k mRNA ($\lambda = 1$) Sequence 40k mRNA ($\lambda = 4$)

- scRNA-seq:
 - Get a count for:
 - each cell
 - each gene
 - The matrix is very sparse:
 - About 360k mRNA per cell (source: qiagen), usually sequence 5-40k mRNA.

Bulk RNA Sec

- A 0 does not mean no expression.
- The noise and sparsity can be explained by the Poisson distribution.
- People usually display logNorm expression: $log(1 + 10^4 \frac{x}{N})$

If we know how to model the noise, can we denoise scRNA-seq?

From wikimedia

A mRNA with a concentation of 10^{-4} Sequence 10k mRNA ($\lambda = 1$) Sequence 40k mRNA ($\lambda = 4$)

baredSC

baredSC for a single gene (baredSC_1d)

- Goal: Find an estimation of the Probability Density Function (PDF) of the REAL expression for a given gene.
- Hypotheses:
 - Most of 'noise' in scRNA-seq comes from sampling and can be explained by a Poisson law.
 - The PDF can be approximated by a Gaussian mixture model.
- Parameters
 - Number of Gaussians
 - Characteristics of Gaussians
- Strategy
 - Bayesian approach = evaluate the probability of the parameters given the data
 - We use Markov chain Monte Carlo for a fixed number of Gaussians and then combine different results using evidence.

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

Test baredSC_1d using simulated data

- Generate random expression following different distributions
- Use number of mRNA per cell quantified from a real dataset
- Simulate counts using Poisson
- Run baredSC_1d

baredSC_1d with real data

• Improve regular violin plots

Bolt et al. 2021

baredSC_1d with real data

• Improve regular violin plots

baredSC_1d with real data

• Improve regular violin plots

Bolt et al. 2021

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-27492-1 OPEN

Cell-specific alterations in *Pitx1* regulatory landscape activation caused by the loss of a single enhancer

Raquel Rouco ^{12,5}, Olimpia Bompadre ^{12,5}, Antonella Rauseo^{1,2}, Olivier Fazio³, Rodrigue Peraldi^{1,2,4}, Fabrizio Thorel³ & Guillaume Andrev ^{12,28}

baredSC_2d

- The same strategy used for a single gene can be extended to 2 dimensions for 2 genes using 2D gaussians.
- From the MCMC posteriors we can deduce a correlation coefficient.

baredSC: Conclusions

- baredSC help to study the distribution of expression levels in a few genes of interest.
 - It could replace the widely used violin plots from normalized data.
 - It allows to retrieve the multi-modal expression distribution.
- baredSC in 2D allows better evaluation of the correlation between genes.
- Big disadvantage of baredSC is the computation time.

baredSC is already in Galaxy

Acknowledgements

- Jean-Baptiste Delisle
- Duboule's lab
- Andrey's lab
- tools-iuc

