
Haplotype-based variant detection from

short-read sequencing

Erik Garrison and Gabor Marth

November 4, 2016

Abstract

With genomic variant detection methods, we can determine point-wise
differences against a reference genome. Widely-used methods fail to reli-
ably characterize the relative phase of proximal alleles. This information
is essential for the functional interpretation of genomic material, and can
be determined directly from the primary sequence reads. Here we propose
such a method, and demonstrate that the use of haplotypes does not only
improve our ability to interpret genomic information, and affords a large
improvement in detection performance over existing methods. We imple-
ment our approach in the freebayes Bayesian variant detector. To do so,
we extend the now-ubiquitous Bayesian variant detection model to allow
for arbitrary genome architecture, ploidy, population structure, numbers
of samples, and numbers of alleles. To further improve performance, we
extend the model to incorporate an estimate of our confidence that the
locus and alleles under analysis can be characterized accurately using our
experimental data. These advances allow freebayes to outperform all ex-
isting variant detection methods at the detection of SNPs, indels, and
small complex variants.

1 Motivation

While statistical phasing approaches are necessary for the determi-
nation of large-scale haplotype structure [Browning and Browning,
2007, Delaneau et al., 2012, Howie et al., 2011, Li et al., 2010], se-
quencing traces provide short-range phasing information that may
be employed directly in primary variant detection to establish phase
between proximal alleles. Present read lengths and error rates limit
this physical phasing approach to variants clustered within tens to
hundreds of bases, but as the cost of obtaining long sequencing traces
decreases [Branton et al., 2008, Clarke et al., 2009], physical phasing
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methods will enable the determination of larger haplotype structure
directly using only sequence information from a single sample.

Haplotype-based variant detection methods, in which short hap-
lotypes are read directly from sequencing traces, offer a number of
benefits over methods which operate on a single position at a time.
Haplotype-based methods ensure semantic consistency among de-
scribed variants by simultaneously evaluating all classes of alleles in
the same context. Locally phased genotypes can be used to improve
genotyping accuracy in the context of rare variations that can be
difficult to impute due to sparse linkage information.

Similarly, they can assist in the design of genotyping assays,
which can fail in the context of undescribed variation at the as-
sayed locus. These methods can provide the direct detection of
complex variants of clinical significance, such as the BLMAsh allele,
a complex block substitution in a helicase gene related to cancer risk
[Cleary et al., 2003] or recurrent multi-nucleotide polymorphisms of-
ten found in particular cancer types [Huang et al., 2013]. Directly
detecting such alleles from sequencing data decreases the cost of sec-
ondary, manual analysis of detected variants, a significant diagnostic
cost now generally accepted as necessary for the accurate reporting
of non-SNP variation in clinical diagnostic contexts.

The use of longer haplotypes in variant detection can improve
detection by increasing the signal to noise ratio of the genotype
likelihood space that is used in analysis, provided some degree of
independence between sequencing errors. This follows from the fact
that the space of possible erroneous haplotypes expands dramati-
cally with haplotype length, while the space of true variation re-
mains constant, with the number of true alleles less than or equal
to the ploidy of the sample at a given locus.

The direct detection of haplotypes from alignment data presents
several challenges to existing variant detection methods. As the
length of a haplotype increases, so does the number of possible al-
leles within the haplotype, and thus methods designed to detect
genetic variation over haplotypes in a unified context must be able
to model multiallelism. However, most variant detection methods
establish estimates of the likelihood of polymorphism at a given loci
using statistical models which assume biallelism [Li, 2011, Marth
et al., 1999] and uniform, typically diploid, copy number [DePristo
et al., 2011]. Moreover, improper modeling of copy number impedes
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the accurate detection of small variants on sex chromosomes, in
polyploid organisms, or in locations with known copy-number vari-
ations, where called alleles, genotypes, and likelihoods should reflect
local copy number and global ploidy.

To enable the application of population-level inference methods
to the detection of haplotypes, we generalize the Bayesian statistical
method described by Marth et al. [1999] to allow multiallelic loci and
non-uniform copy number across the samples under consideration.
We have implemented this model in FreeBayes [Garrison, 2012a]. In
addition to extensions enabling haplotype-based detection, we have
incorporated a model of the capacity for the alignments to charac-
terize the locus and alleles in question into our prior probability.

2 Results

2.1 Small variant detection in simulated data

To assess the performance of our method, we used the population
genome simulator mutatrix [Garrison, 2012b] to simulate variation
in 100 samples over 100 kilobases of human chromosome 20, and
the mason read simulator [Holtgrewe, 2010] to generate a simulated
Illumina-like 70bp-reads at 10x depth per sample. The data were
aligned with Mosaik [Lee and Strömberg, 2012], and variants were
called using several popular detection methods capable of simultane-
ously detecting SNPs and short indels: GATK HaplotypeCaller and
UnifiedGenotyper (version 2.7.4) [DePristo et al., 2011], samtools
(version 0.1.19-44428cd) [Li et al., 2009], and FreeBayes (version
0.9.9.2-21-g78714b8). To assess each caller’s detection performance
we generated receiver-operator characteristics (ROCs) using vcfroc
[Garrison, 2012c]. We provide results in terms of area under the
curve (AUC) for all tested variant callers in table 1.

These results indicate that FreeBayes provides superior perfor-
mance to the GATK and samtools at all assayed depths and num-
bers of samples. We observe that the difference in the AUC metric
is dominated by both minimum distance from perfect discrimination
(perfect sensitivity and perfect specificity), in which FreeBayes con-
sistently outperforms the other methods, and by apparent hard limi-
tation on sensitivity imposed by the other methods. We hypothesize
that the difference in performance for indels, which is larger than
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that for SNPs, reflects our method’s detection of alleles on haplo-
types, which improves the signal to noise ratio of the and effectively
removes low-frequency alignment artifacts without the need for out-
of-band indel and base-quality recalibration methods (we further
explore this in 2.3).

Figure 1: Receiver-operator characteristics (ROCs) for FreeBayes, GATK Hap-
lotypeCaller and UnifiedGenotyper, and samtools on 100 samples at 10x sim-
ulated sequencing depth. FreeBayes achieves the highest area under the curve
(AUC) 1, with the HaplotypeCaller and samtools each performing next-best for
indels and SNPs, respectively.

2.2 Using simulation to assess the direct detection of hap-
lotypes

In order to facilitate our assessment of the method at determining
phase between clusters of alleles, we set a mutation rate sufficient to
generate many clusters of variants in these simulated samples. We
then simulated reads at 20x coverage from the resulting simulated
chromosomes using wgsim [Li et al., 2009], aligned the results using
Mosaik [Lee and Strömberg, 2012] and ran freebayes on the resulting
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variant detector depth samples AUC SNPs AUC indels
FreeBayes 10 100 0.9594 0.9400
GATK HaplotypeCaller 10 100 0.8155 0.7765
GATK UnifiedGenotyper 10 100 0.8907 0.7073
samtools 10 100 0.9056 0.4698

Table 1: Performance of FreeBayes, GATK HaplotypeCaller and UnifiedGeno-
typer, and samtools against simulated data.

alignments specifying a haplotype detection length of 10bp. The re-
sults were compared to the truth set produced by mutatrix using the
utility vcfgeno2haplo in vcflib [Garrison, 2012c] which can construct
haplotype observations of a given length from phased genotype in-
formation like that produced by mutatrix.

Our results agree with those obtained for other classes of small
variants in section 2.1, showing high performance against SNPs
(AUC of 0.979) and indels (AUC of 0.948). For complex variants
composed between multiple small variants, direct detection provides
an AUC of 0.919.

Figure 2: A known error mode of Illumina sequencing methods generates a 1bp
insertion artifact that is detected by standard mapping-based variant calling
methods. The artifact results in a relative over-abundance of 1bp insertions.
Here, we characterize the ability of our method to remove this artifact by de-
tecting variants in a larger detection window. As the calling window size is
increased beyond 10bp, the artifact is effectively removed, and the balance be-
tween insertions and deletions at a given length normalizes.
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2.3 Using haplotype-based variant detection to improve
the signal to noise ratio of candidate variants

The fluorescence-based imaging utilized by Illumina sequencing ma-
chines is susceptible to errors generated by air bubbles introduced
into the flowcell in which the sequencing reaction takes place. Bub-
ble errors tend to manifest themselves as high-quality 1bp insertions
in sequencing traces derived from spots in the affected regions of
the sequencing flowcell. These errors are randomly distributed with
respect to reference position, but their high frequency in some se-
quencing runs means that they will spuriously be detected by single-
position mapping-based variant detectors when they overlap posi-
tionally. We can observe the presence of this error because it causes
a preponderance of 1bp insertions over deletions. Typically, 1bp
insertions are discoverable in human genomes at a slightly lower fre-
quency than deletions, and thus this error process can be observed
by inspection of the indel length-frequency distribution.

To assess the ability of our haplotype-based method to overcome
this characteristic error, we detected variants in the previously de-
scribed AFR191 sample set using a number of different haplotype
lengths. The indel detection results (figure 2) indicate that this
error mode can be effectively removed from small variant calls by
increasing the detection window size to 10bp or greater.

As we increase the length of detected haplotypes, we increase
the number of possible erroneous haplotypes without increasing the
number of true haplotypes. This effect results in an improved signal
to noise ratio for detected variants at larger haplotype sizes. As
such, increasing window size in our algorithm allows us to exclude
likely insertion artifacts from consideration, as the recurrance of an
erroneous haplotype diminishes rapidly with haplotype length. We
hypothesize that this effect dominates the improvement in speci-
ficity yielded by assembly methods. However, if window sizes are
fixed, as is the case in the existing implementations of such methods,
sensitivity to rare variation will suffer (discussed in section 2.8).

2.4 Using haplotype-based variant detection to understand
genotyping array design failure

Variant calls generated during the pilot phase of the 1000 Genomes
Project [1000 Genomes Project Participants, 2012] were used to de-
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Figure 3: The Omni 2.5 genotyping array includes a number of alleles which
consistently report as non-polymorphic (monomorphic) in the 1000 Genomes
cohort in which they were originally detected. By detecting variants using our
method at a 10bp variant calling window, we demonstrate that more than 90%
of the apparently monomorphic loci are not biallelic SNPs, and thus the array
design does not match the local variant structure in these samples. By using
a haplotype-based approach, groups designing genotyping arrays can avoid this
common error mode.

sign a genotyping array, (the Illumina OMNI2.5). Subsequently,
many of the alleles on this array (approximately 10%) were found
to be putatively monomorphic in the same set of samples, suggesting
they resulted from variant detection error.

We investigated these loci using whole-genome calls in the low-
coverage cohort in Phase I of the 1000 Genomes Project. We ran
freebayes using a haplotype window of 10 base pairs. On compari-
son with the monomorphic array loci, we found that approximately
90% of the array-monomorphic loci overlap non-SNP or non-biallelic
variation in these samples within 10bp of the target SNP, whereas
the opposite is true of polymorphic loci— greater than 90% of loci
assayed as polymorphic overlap biallelic SNPs.

We observe that many of the apparent failures in variant detec-
tion are actually caused by an inability of methods to assess local
clusters of variation. The accurate design of genotyping arrays and
their use in cross-validation of sequencing-based genotyping perfor-
mance thus requires information about local haplotypes structure.
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2.5 The importance of accurately modeling copy number
variations on sex chromosomes

Our method is currently the only variant detector in common use
which provides the ability to call males and females jointly on chro-
mosome X with correct copy number. To evaluate the benefits of
this approach, we detected variants in chromosome X for 191 low-
coverage 1000 Genomes samples of African ancestry using FreeBayes
both with and without copy-number awareness. Comparison of our
results to the genotyping array calls (excluding cases of likely array
failure due to non-SNP, non-biallelic variation as described in section
2.4) indicates that when calling without copy-number awareness, our
genotyping error rate was 7.28%, whereas when calling with aware-
ness of copy-number, the genotyping error rate is only 3.55%. The
relatively high error rate is typical in the case of low-coverage data.
The difference in overall error rate suggests that there is substan-
tial benefit to directly modeling copy number within the variant
detection process.

2.6 Comparing to other methods in low-coverage sequenc-
ing data

In the testing phase of the 1000 Genomes Project, participating
groups submitted callsets based on 191 samples of African ances-
try (AFR191). Results are characterized in figure 2. Unlike other
haplotype-based and assembly metods, the approach described in
this paper (BC2) provides sensitivity to known variants equiva-
lent to mapping-based methods (BCM, BC1, SI1, UM). Further-
more, the method’s ability to characterize haplotypes in loci which
appeared to be monomorphic on the Omni genotyping array al-
lows for discrimination against known artifacts as good as the best
mapping-based detection pipelines. Thus we achive a result which
is nearly equivalent in sensitivity to the most-sensitive mapping-
based method (BCM) and of a similar specificity to that achieved
by assembly methods (OX2, SI2 BI2).
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call set BC BCM BI1 SI1 UM BC2 BI2 OX1 SI2 OX2 Union 2/9 3/9 4/9 BC cons
SNPs [K] 459 512 481 480 491 495 362 452 252 101 621 548 518 487 543
Omni poly [%] 91.6 98.9 96.5 95.2 97.6 97.4 88.4 87 83.1 44.6 99.3 98.9 98.6 97.6 98.7
Hapmap [%] 94.5 99.4 98 95.6 98.9 98.3 93.6 90.3 91.1 53.7 99.4 99.4 99.3 99 98.6
Omni mono [%] 1.39 1.63 0.29 0.62 0.77 0.56 0.14 1.1 0.72 0.1 3.73 0.97 0.67 0.48 0.65

Table 2: Performance of various variant detection pipelines tested as part of the
1000 Genomes Project. Sets are Boston College; non-haplotype-based method
(BC), haplotype-based method described in this paper (BC2), Baylor College
of Medicine (BCM), Broad Institute GATK UnifiedGenotyper (BI1), Sanger
Institute Samtools (SI1), University of Michigan GlfMultiples (UM), Broad In-
stitute GATK HaplotypeCaller (BI2), Oxford Platypus (OX1), Sanger SGA
(SI2), Oxford Cortex (OX2). Union: combination of all variants detected in
component methods. 2/9, 3/9, 4/9: voting-based consensus results. BC cons:
haplotype-based ensemble method.

center specificity sensitivity caller optimality AUC
Oxford Cortex 98 27 OX2 73.02739 0.2646
Pindel 90 52 Pindel 49.03060 0.4680
BC 83 66 BC 38.01316 0.5478
Broad assembly 80 67 BI2 38.58756 0.5360
Sanger 76 69 SI1 39.20459 0.5244
Broad mapping 65 74 BI1 43.60046 0.4810
Oxford Platypus 60 55 OX1 60.20797 0.3300

2.7 Indel detection performance

2.8 Sensitivity to low-frequency variation

Current methods for haplotype-based variant detection rely on as-
sembly methods, which can be applied globally [Iqbal et al., 2012]
or locally [Albers et al., 2011]. These methods remove reference bias
from the analysis of short-read sequencing data, but the generation
of assemblies of large genomes requires pruning of low-frequency
kmer observations. While low-frequency kmers are often generated
by sequencing error, in many cases they represent true variation, and
thus this pruning reduces the sensitivity of existing assembly meth-
ods to true low-frequency variants. In many contexts it is important
to accurately and sensitively assess low-frequency variation, such as
in experiments involving large numbers of samples, in the detection
of sub-clonal mutations in cancer, and in pooled sequencing projects
such as viral and metaganomic studies. Our method does provide
direct description of haplotypes, but because these haplotypes are
generated only where multiple variations segregate an observed hap-
lotype from the reference, it maintains sensitivity to low-frequency
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Figure 4: Performance of indel detection methods in 1000 Genomes project on
the AFR191 sample set as assesed via high-depth resequencing validation. Sets
are Boston College FreeBayes (BC), Broad Institute GATK UnifiedGenotyper
(BI1), Sanger Institute Samtools (SI1), Broad Institute GATK HaplotypeCaller
(BI2), Oxford Platypus (OX1), Oxford Cortex (OX2).

variants.
Results from the experiments described in 2.6 demonstrate that

our method, while acting as a form of local assembly, does not incur
the same sensitivity penalties seen in both local and global assembly
methods. We assess this using the count of minor alternate alleles
as reported by each caller (figure 5). These results indicate that
both global and local assembly methods suffer significant decrease
in sensitivity to low-frequency variants, although the effect is less
severe for local assembly. In this test our method performs as well or
better than the GATK UnifiedGenotyper, which is purely mapping-
based, the GATK HaplotypeCaller, which uses local assembly, and
the string graph assembler (SGA) which is a global, reference-free
assembly approach.

2.9 Haplotype-based consolidation of small variant calls

Ensemble methods have been shown to provide superior perfor-
mance to component inference methods in many contexts [Opitz
and Maclin, 1999]. We hypothesize that ensemble approaches to
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Figure 5: Sensitivity to low-frequency variants of various detection methods, as
assessed in 191 samples of African ancestry in the 1000 Genomes low-coverage
cohort. BC2 is FreeBayes, BI1 is the GATK UnifiedGenotyper, BI2 is the GATK
HaplotypeCaller, and SI2 is the global assembler SGA.

variant detection from short-read sequencing may provide improved
performance in the context of variant detection. While ensemble
approaches have already been successfully applied to SNPs in large-
scale resequencing projects [?], their application to other variant
classes is problematic because detectors can output the same allele
in slightly different ways. In the 1000 Genomes Phase I integrated
callset, we find 181,567 cases in which incorrect description of small
variants results in an “impossible” haplotype, such as where a small
variant is phased inside of of a deletion, or multiple deletions overlap
within 50 base pairs. We can avoid such errors by using an approach
that establishes the local haplotype structure around variants prior
to using statistical phasing approaches to estimate large-scale hap-
lotypes.

3 Methods

3.1 Definitions

At a given genetic locus we have n samples drawn from a population,
each of which has a copy number or multiplicity of m within the lo-
cus. We denote the number of copies of the locus present within
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our set of samples as M =
∑n

i=1mi. Among these M copies we
have K distinct alleles, b1, . . . , bK with allele counts c1, . . . , cK and
frequencies f1, . . . , fK . Each individual has an unphased genotype
Gi comprised of ki distinct alleles bi1 , . . . , bki with corresponding
genotype allele counts ci1 , . . . , ciki and genotype allele frequencies

fi1 , . . . , fiki : fi = ci/ki. Gi may be equivalently expressed as a

multiset of alleles Bi : |Bi| = mi. For the purposes of our anal-
ysis, we assume that we cannot accurately discern phasing infor-
mation outside of the haplotype detection window, so our Gi are
unordered and all Gi containing equivalent alleles and frequencies
are regarded as equivalent. Assume a set of si sequencing observa-
tions ri1 , . . . , risi = Ri for each sample in our set of n samples such
that there are

∑n
i=1 |Ri| reads at the genetic locus under analysis.

We use qi to denote the mapping quality, or probability that the
read ri is mis-mapped against the reference.

3.2 A Bayesian approach

To genotype the samples at a specific locus, we could simply apply a
Bayesian statistic relating P (Gi|Ri) to the likelihood of sequencing
errors in our reads and the prior likelihood of specific genotypes.
However, this maximum-likelihood approach limits our ability to
incorporate information from other individuals in the population
under analysis, which can improve detection power.

Given a set of genotypes G1, . . . , Gn and a set of observations
observations R1, . . . , Rn for all individuals at the current genetic
locus, we can use Bayes’ theorem to related the probability of a
specific combination of genotypes to both the quality of sequencing
observations and a priori expectations about the distribution of
alleles within a set of individuals sampled from the same population:

P (G1, . . . , Gn|R1, . . . , Rn) =
P (G1, . . . , Gn)P (R1, . . . , Rn|G1, . . . , Gn)

P (R1, . . . , Rn)
(1)

P (G1, . . . , Gn|R1, . . . , Rn) =
P (G1, . . . , Gn)

∏n
i=1 P (Ri|Gi)∑

∀G1,...,Gn
P (G1, . . . , Gn)

∏n
i=1 P (Ri|Gi)

(2)
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In this formulation, P (R1, . . . , Rn|G1, . . . , Gn) =
∏n

i=1 P (Ri|Gi)
represents the likelihood that our observations match a given geno-
type combination (our data likelihood), and P (G1, . . . , Gn) repre-
sents the prior likelihood of observing a specific genotype combina-
tion. We estimate the data likelihood as the joint probability that
the observations for a specific individual support a given genotype.
We use a neutral model of allele diffusion conditioned on an esti-
mated population mutation rate to estimate the prior probability of
sampling a given collection of genotypes.

Except for situations with small numbers of samples and poten-
tial alleles, we avoid the explicit evaluation of the posterior distri-
bution as implied by (2), instead using a number of optimizations
to make the algorithm tractable to apply to very large datasets (see
section 4.3).

3.3 Estimating the probability of sequencing observations
given an underlying genotype, P (Ri|G)

Given a set of reads Ri = ri1 , . . . , risi from a sample at a given
locus, we can extract a set of ki observed alleles B′i = b′1, . . . , b

′
ki

corresponding to underlying alleles b1, . . . , bi which encapsulate the
potential set of represented variants at the locus in the given sample,
including erroneous observations. Each of these observed alleles b′i
has a count of within the observations of the individual sample

:
∑ki

j=1 oj = si and corresponds to a true allele bi.
The probability of obtaining a single observation b′i provided a

genotype in a single sample is:

P (b′i|G) =
∑
∀(bi∈G)

fiP (b′i|bi) (3)

Here fi is the genotype allele frequency of bi in G. We observe
that the process generating reads from a given locus in a given sam-
ple is a multinomial process in which the sampling probabilities for
each allele are governed by both the counts of alleles in the genotype
and the error process that generates b′i from underlying bi. However,
for the case that the base observation agrees with the underlying
genotype, sampling probability dominates the probability that the
observations are derived from a given genotype, and in the case
when the observation does not agree with the genotype, the domi-
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nant process is the observation error. Following this observation we
introduce the approximation that:

P (b′|b) =

{
1 if b′ = b
P (error) if b′ 6= b

(4)

Here P (error) is the probability that the base is erroneous as
determined by the sequencing process used to generate the reads
from the sample. Provided this approximation, we can estimate
the probability of a given set of reads conditioned on an underlying
genotype by using the multinomial sampling probability to estimate
the probability of obtaining the observations that support the geno-
type scaled by the probability that the observations that disagree
with the genotype are erroneous:

P (Ri|G) ≈
(

si
o1, . . . , oki

) ki∏
j=1

f
oj
ij

si∏
l=1

P (b′l|bl) (5)

3.4 Genotype combination priors, P (G1, . . . , Gn)

3.4.1 Decomposition of prior probability of genotype combination

LetG1, . . . , Gn denote the set of genotypes at the locus and f1, . . . , fk
denote the set of allele frequencies which corresponds to these geno-
types. We estimate the prior likelihood of observing a specific com-
bination of genotypes within a given locus by decomposition into
resolvable terms:

P (G1, . . . , Gn) = P (G1, . . . , Gn ∩ f1, . . . , fk) (6)

The probability of a given genotype combination is equivalent
to the intersection of that probability and the probability of the
corresponding set of allele frequencies. This identity follows from
the fact that the allele frequencies are derived from the set of geno-
types and we always will have the same f1, . . . , fk for any equivalent
G1, . . . , Gn.

Following Bayes’ Rule, this identity further decomposes to:

P (G1, . . . , Gn ∩ f1, . . . , fk) = P (G1, . . . , Gn|f1, . . . , fk)P (f1, . . . , fk)
(7)
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We now can estimate the prior probability of G1, . . . , Gn in terms
of the genotype combination sampling probability, P (G1, . . . , Gn|f1, . . . , fk),
and the probability of observing a given allele frequency in our pop-
ulation, P (f1, . . . , fk).

3.4.2 Genotype combination sampling probability P (G1, . . . , Gn|f1, . . . , fk)

The multinomial coefficient
(

M
c1,...,ck

)
gives the number of ways which

a set of alleles with frequencies f1, . . . , fk : fi = ci/M may be dis-

tributed among M copies of a locus. For phased genotypes Ĝi the
probability of sampling a specific Ĝ1, . . . , Ĝn given allele frequencies
f1, . . . , fk is thus provided by the inverse of this term:

P (Ĝ1, . . . , Ĝn|f1, . . . , fk) =

(
M

c1, . . . , ck

)−1
(8)

However, our model is limited to unphased genotypes because
our primary data only allows phasing within a limited context.
Consequently, we must adjust (8) to reflect the number of phased
genotypes which correspond to the unphased genotypingG1, . . . , Gn.
Each unphased genotype corresponds to as many phased genotypes
as there are permutations of the alleles in Gi. Thus, for a given
unphased genotyping G1, . . . , Gn, there are

∏n
i=1

(
mi

ci1 ,...,ciki

)
phased

genotypings.
In conjunction, these two terms provide the probability of sam-

pling a particular unphased genotype combination given a set of
allele frequencies:

P (G1, . . . , Gn|f1, . . . , fk) =

(
M

c1, . . . , ck

)−1 n∏
i=1

(
mi

ci1 , . . . , ciki

)
(9)

In the case of a fully diploid population, the product of all pos-
sible multiset permutations of all genotypes reduces to 2h, where h
is the number of heterozygous genotypes, simplifying (9) to:

P (G1, . . . , Gn|f1, . . . , fk) = 2h

(
M

c1, . . . , ck

)−1
(10)

15



3.4.3 Derivation of P (f1, . . . , fk) by Ewens’ sampling formula

Provided our sample size n is small relative to the population which
it samples, and the population is in equilibrium under mutation and
genetic drift, the probability of observing a given set of allele fre-
quencies at a locus is given by Ewens’ sampling formula [Ewens,
1972]. Ewens’ sampling formula is based on an infinite alleles coa-
lescent model, and relates the probability of observing a given set
of allele frequencies to the number of sampled chromosomes at the
locus (M) and the population mutation rate θ.

The application of Ewens’ formula to our context is straightfor-
ward. Let af be the number of alleles among b1, . . . , bk whose allele
count within our set of samples is c. We can thus transform our set
of frequencies f1, . . . , fk (equivalently, allele counts, c1, . . . , ck) into a

set of non-negative frequency counts a1, . . . , aM :
∑M

c=1 cac = M . As
many c1, . . . , ck can map to the same a1, . . . , aM , this transformation
is not invertible, but it is unique from a1, . . . , aM to c1, . . . , ck.

Having transformed a set of frequencies over alleles to a set of
frequency counts over frequencies, we can now use Ewens’ sampling
formula to approximate P (f1, . . . , fk) given θ:

P (f1, . . . , fk) = P (a1, . . . , aM) =
M !

θ
∏M−1

z=1 (θ + z)

M∏
j=1

θaj

jajaj!
(11)

In the bi-allelic case in which our set of samples has two alleles
with frequencies f1 and f2 such that f1 + f2 = M :

P (af1 = 1, af2 = 1) =
M !∏M−1

z=1 (θ + z)

θ

f1f2
(12)

While in the monomorphic case, where only a single allele is
represented at this locus in our population, this term reduces to:

P (aM = 1) =
(M − 1)!∏M−1
z=1 (θ + z)

(13)

In this case, P (f1, . . . , fk) = 1−θ when M = 2. This is sensible as
θ represents the population mutation rate, which can be estimated
from the pairwise heterozygosity rate of any two chromosomes in
the population [Tajima, 1983, Watterson, 1975].
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3.5 Expanding the model to incorporate the observability
of the locus and alleles

The bayesian model described in section 3.2 can generate poste-
rior estimates based on sequencing quality information and geno-
type distribution in a panel of samples. However, this estimate can
incorporate only information captured in base quality information
and read counts. This may fail to assess the ability of the sequenc-
ing and alignment methods to accurately characterize the locus and
alleles that we genotype, which is an important consideration for
downstream use of sequencing-derived genotype data.

Previous authors have addressed this limitation by adding post-
processing steps to recalibrate the estimated quality of variants using
training sets of known variants and known artifacts. Once variant
calls have been made we can annotate them with a variety of fea-
tures and apply standard machine learning methods to “recalibrate”
the quality estimates produced from genotype distribution, allele fre-
quency, observation counts, and base quality. For instance, DePristo
et al. [2011] apply a guassian mixture model (VQSR) to features ex-
tracted from putatively polymorphic loci to remove variants which
are outliers in multiple feature dimensions.

Problematically, such an approach requires a training set, which
may not be applicable in contexts with limited validation data, such
as is commonly the case in non-model organisms. Furthermore, the
training set may bias our results towards established patterns, de-
creasing sensitivity to novel variation that might have been previ-
ously uncharacterized due to technological limitations.

In contrast, we address the issue of loci sequencability in a gen-
eral, a priori fashion by extending the traditional Bayesian variant
detection model to incorporate an indicator, S, which describes the
ability of our sequencing and alignment methods to characterize the
locus we are considering. We define S = true when we can se-
quence the locus and alleles and S = false otherwise, and redefine
our model (2) to estimate the posterior probability of a particular
set of genotypes in our samples (G1, . . . , Gn) and that the locus is
sequenceable (S) given our aggregate read evidence (R1, . . . , Rn):
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P (G1, . . . , Gn, S|R1, . . . , Rn) =
P (G1, . . . , Gn)P (S)

∏n
i=1 P (Ri|Gi)∑

∀G1,...,Gn
(P (G1, . . . , Gn)P (S)

∏n
i=1 P (Ri|Gi))

(14)
We will describe the development of P (S) using aggregate statis-

tics built from the read evidence overlapping the locus in section
3.6.

3.6 Estimation of the probability that the locus is sequen-
cable P (S)

For accurate variant detection via resequencing, we require that the
locus in question is sequencable. That is, we require that the ref-
erence is accurate, that we have an accurate model of copy number
at the locus, that we have genomic coverage, and that reads can
be aligned to the alleles of interest in the region. In a case where
these conditions are met, we assume S = true. Where it is not,
S = false.

The sequenceability of a locus and its alleles is assumed under
previous Bayesian variant detection models [Li, 2011, Li et al., 2009,
Marth et al., 1999]. Uncertainty about the genomic model charac-
terization has been incorporated into data likelihoods or detection
thresholds using read mapping quality [Li et al., 2008, Wang et al.,
2013]. In practice, the incorporation of confidence in the charac-
terizability of the locus and alleles requires the reclassification of
variant calls on the basis of aggregate metrics describing the calls,
such as the ratio of observations for an alternate allele to those for a
reference allele among apparent heterozygotes, or the average obser-
vation quality (base quality) of alleles. In practice, variant detectors
have been modified to supply annotations to downstream classifiers
that “recalibrate” the quality estimates, but no existing method has
incorporated estimates of sequenceability into the Bayesian inference
model.

A quality score recalibrator utilizes training data, particularly as
sets of known variants or validated errors, to describe the distribu-
tion of true events and errors across the space of possible annotations
in the data set to be recalibrated. The variant calling error function
as described by these aggregate metrics can then be approximated
using a variety of machine learning methods, such as support vec-
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tor machines [O’Fallon et al., 2013] or a gaussian mixture model
as implemented in the GATK’s Variant Quality Score Recalibrator
(VQSR).

We observe that S is proportional to a number of variables which
can be estimated directly from the observations covering a genomic
locus. For instance, if the locus and alleles are observable without
bias, we expect the count of observations of a sample supporting
a particular alternate allele Ri ≡ b to approximate its frequency
in the correct genotype Gi for the sample, |Ri ≡ b|/|Ri| ≈ |b ∈
Gi|/mi. Deviation from this expectation which is observed across
many samples may indicate problems mapping reads containing the
alternate against the reference, or hidden copy-number variations or
paralogs that might frustrate our observation of the locus. Similarly,
if we use whole-genome shotgun techniques, we have a number of
other expectations about behavior of the reads in aggregate with
respect to a particular allele and locus. We will express these in
terms of a bias terms B∗ that equal 0 when there is no bias for a
particular metric.

In an unbiased context, we expect half of our reads to place to
either side of the locus (placement bias Bp):

P (Bp = 0) ∝
(
|Rleft|
|R|

)
0.5|Rleft| (15)

We expect half to contain the allele in the first half of their length
(cycle bias Bc):

P (Bc = 0) ∝
(
|Rstart|
|R|

)
0.5|Rstart| (16)

Half should be derived from each strand of DNA (strand bias
Bs):

P (Bs = 0) ∝
(
|Rforward|
|R|

)
0.5|Rforward| (17)

And, the aggregate fraction of reads supporting a particular al-
lele in samples with a particular genotype should approximate the
frequency of the allele in that particular genotype (allele balance,
Ba). Recall that the distinct alleles in a particular set of genotypes
are b1, . . . , bK , the corresponding allele frequencies in the set are
f1, . . . , fk, and the observation counts are represented by o1, . . . , oK :
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P (Ba = 0) ∝
∏
∀g∈{G}

(
|R|

o1, . . . , oK

) K∏
j=1

f
oj
j (18)

We use these relationships to determine relationships in P (S)
under various configurations of alleles and genotypes in the samples:

P (S) ∝ P (Bp = 0)P (Bc = 0)P (Bs = 0)P (Ba = 0) (19)

4 Direct detection of phase from short-read se-
quencing

By modeling multiallelic loci, this Bayesian statistical framework
provides the foundation for the direct detection of longer, multi-
base alleles from sequence alignments. In this section we describe
our implementation of a haplotype-based variant detection method
based on this model.

Our method assembles haplotype observations over minimal, dynamically-
determined, reference-relative windows which contain multiple seg-
regating alleles. To be used in the analysis, haplotype observations
must be derived from aligned reads which are anchored by reference-
matching sequence at both ends of the detection window. These
haplotype observations have derived quality estimations which al-
low their incorporation into the general statistical model described
in section 3. We then employ a gradient ascent method to determine
the maximum a posteriori estimate of a mutual genotyping over all
samples under analysis and establish an estimate of the probability
that the loci is polymorphic.

4.1 Parsing haplotype observations from sequencing data

In order to establish a range of sequence in which multiple polymor-
phisms segregate in the population under analysis, it is necessary to
first determine potentially polymorphic windows in order to bound
the analysis. This determination is complicated by the fact that a
strict windowing can inappropriately break clusters of alleles into
multiple variant calls. We employ a dynamic windowing approach
that is driven by the observation of multiple proximal reference-
relative variations (SNPs and indels) in input alignments.
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Where reference-relative variations are separated by less than
a configurable number of non-polymorphic bases in an aligned se-
quence trace, our method combines them into a single haplotype
allele observation, Hi. The observational quality of these haplotype
alleles is given as min(ql ∀ b′i ∈ Hi, Qi), or the minimum of the sup-
porting read’s mapping quality and the minimum base quality of
the haplotype’s component variant allele observations.

Figure 6: The direct detection of phase from short-read sequencing traces and
counting of haplotypes across dynamically-determined windows.

4.2 Determining a window over which to assemble haplo-
type observations

At each position in the reference, we collect allele observations de-
rived from alignments as described in 4.1. To improve performance,
we apply a set of input filters to exclude alleles from the analysis
which are highly unlikely to be true. These filters require a mini-
mum number of alternate observations and a minimum sum of base
qualities in a single sample in order to incorporate a putative allele
and its observations into the analysis.

We then determine a haplotype length over which to genotype
samples by a bounded iterative process. We first determine the
allele passing the input filters which is longest relative to the refer-
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ence. For instance, a longer allele could be a multi-base indel or a
composite haplotype observation flanked by SNPs. Then, we parse
haplotype observations from all the alignments which fully overlap
this window, finding the rightmost end of the longest haplotype al-
lele which begins within the window. This rightmost position is used
to update the haplotype window length, and a new set of haplotype
observations are assembled from the reads fully overlapping the new
window. This process repeats until the rightmost end of the window
is not partially overlapped by any haplotype observations which pass
the input filters. This method will converge given reads have finite
length and the only reads which fully overlap the detection window
are used in the analysis.

4.3 Detection and genotyping of local haplotypes

Once a window for analysis has been determined, we parse all fully-
overlapping reads into haplotype observations which are anchored
at the boundaries of the window. Given these sets of sequencing
observations ri1 , . . . , risi = Ri and data likelihoods P (Ri|Gi) for each
sample and possible genotype derived from the putative alleles, we
then determine the probability of polymorphism at the locus given
the Bayesian model described in section 3.

To establish a maximum a posteriori estimate of the genotype
for each sample, we employ a convergent gradient ascent approach
to the posterior probability distribution over the mutual genotyping
across all samples under our Bayesian model. This process begins
at the genotyping across all samples G1, . . . , Gn where each sam-
ple’s genotype is the maximum-likelihood genotype given the data
likelihood P (Ri|Gi):

G1, . . . , Gn = argmax
Gi

P (Ri|Gi) (20)

The posterior search then attempts to find a genotypingG1, . . . , Gn

in the local space of genotypings which has higher posterior proba-
bility under the model than this initial genotyping. In practice, this
step is done by searching through all genotypings in which a single
sample has up to the Nth best genotype when ranked by P (Ri|Gi),
and N is a small number (e.g. 2). This search starts with some set
of genotypes G1, . . . , Gn = {G} and attempts to find a genotyping
{G}′ such that:
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P ({G}′|R1, . . . , Rn) > P ({G}|R1, . . . , Rn) (21)

{G}′ is then used as a basis for the next update step. This search
iterates until convergence, but in practice must be bounded at a
fixed number of steps in order to ensure optimal performance. As
the quality of input data increases in coverage and confidence, this
search will converge more quickly because the maximum-likelihood
estimate will lie closer to the maximum a posteriori estimate under
the model.

This method incorporates a basic form of genotype imputation
into the detection method, which in practice improves the quality of
raw genotypes produced in primary allele detection and genotyping
relative to methods which only utilize a maximum-likelihood method
to determine genotypes. Furthermore, this method allows for the de-
termination of marginal genotype likelihoods via the marginalization
of assigned genotypes for each sample over the posterior probability
distribution.

4.4 Probability of polymorphism

Provided a maximum a posteriori estimate of the genotyping of all
the individuals in our sample, we might like establish an estimate of
the quality of the genotyping. For this, we can use the probability
that the locus is polymorphic, which means that the number of
distinct alleles at the locus, K, is greater than 1. While in practice
the space of possible genotypings is too great to integrate over, it
is possible to derive the probability that the loci is polymorphic in
our samples by summing across the monomorphic cases:

P (K > 1|R1, . . . , Rn) = 1− P (K = 1|R1, . . . , Rn) (22)

Equation (22) thus provides the probability of polymorphism at
the site, which is provided as a quality estimate for each evaluated
locus in the output of FreeBayes.

4.5 Marginal likelihoods of individual genotypes

Similarly, we can establish a quality estimate for a single genotype
by summing over the marginal probability of that specific genotype
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and sample combination under the model. The marginal probability
of a given genotype is thus:

P (Gj|Ri, . . . , Rn) =
∑

∀({G}:Gj∈{G})

P ({G}|Ri, . . . , Rn) (23)

In implementation, the estimation of this term requires us to must
sample enough genotypings from the posterior in order to obtain
well-normalized marginal likelihoods. In practice, we marginalize
from the local space of genotypings in which each individual geno-
type is no more than a small number of steps in one sample from the
maximum a posteriori estimate of Gi, . . . , Gn. This space is similar
to that used during the posterior search described in section 4.3.
We apply (23) to it to estimate marginal genotype likelihoods for
the most likely individual genotypes, which are provided for each
sample at each site in the output of our implementation.
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